Alizarin Red S-Confined Layer-By-Layer Films as Redox-Active Coatings on Electrodes for the Voltammetric Determination of L-Dopa

نویسندگان

  • Shigehiro Takahashi
  • Iwao Suzuki
  • Tatsuro Sugawara
  • Masaru Seno
  • Daichi Minaki
  • Jun-Ichi Anzai
چکیده

The preparation of redox-active coatings is a key step in fabricating electrochemical biosensors. To this goal, a variety of coating materials have been used in combination with redox-active compounds. In this study, alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of poly(ethyleneimine) (PEI) and carboxymethylcellulose (CMC) to study the redox properties. A gold (Au) disc electrode coated with PEI/CMC LbL film was immersed in an ARS solution to uptake ARS into the film. ARS was successfully confined in the LbL film through electrostatic interactions. The cyclic voltammogram (CV) of ARS-confined PEI/CMC film-coated electrodes thus prepared exhibited redox waves in the potential range from -0.5 to -0.7 V originating from 9,10-anthraquinone moiety in ARS, demonstrating that ARS preserves its redox activity in the LbL film. An additional oxidation peak appeared around -0.4 V in the CV recorded in the solution containing phenylboronic acid (PBA), due to the formation of a boronate ester of ARS (ARS-PBA) in the film. The oxidation peak current at -0.4 V decreased upon addition of 3,4-dihydroxyphenylalanine (L-dopa) to the solution. Thus, the results suggest a potential use of the ARS-confined PEI/CMC films for constructing voltammetric sensors for L-dopa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component

Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined ...

متن کامل

Voltammetric Studies on Gold Electrodes Coated with Chitosan-Containing Layer-by-Layer Films

Gold (Au) electrodes coated with layer-by-layer (LbL) thin films composed of chitosan (CHI) were prepared to evaluate the redox properties of hexaammine ruthenium ions, Ru(NH₃)₆3+, and ferricyanide ions, Fe(CN)₆3- LbL films were prepared on an Au electrode by electrostatic LbL deposition using polycationic CHI and poly(vinyl sulfate) (PVS) or poly(acrylic acid) (PAA) as anionic component. Redox...

متن کامل

Electrochemical Sensor for the Determination of Alizarin Red-S at Non-ionic Surfactant Modified Carbon Nanotube Paste Electrode

The Cyclic Voltammetric (CV) behavior of Alizarin Red-S (ARS), which is an Anthraquinone dye was examined by utilizing TX-100 modified carbon nanotube paste electrode (TX-100MCNTPE). The surfactant utilized is TX-100, and it has been found that it has good electrocatalytic activity towards ARS. Distinctive parameters like pH, scan rate, detection limit have been studied in the potential range o...

متن کامل

Determination of L- Ascorbic Acid in Plasma by Voltammetric Method

Voltammetric techniques have been considered as important methods among the analytical techniques used for the identification and determination of trace concentrations of many biological molecules such as L-ascorbic acid (AA). L-ascorbic acid is an electro-active molecule, though it is difficult to determine its value directly with a majority of electrodes made of carbon and transition metals, ...

متن کامل

Determination of L- Ascorbic Acid in Plasma by Voltammetric Method

Voltammetric techniques have been considered as important methods among the analytical techniques used for the identification and determination of trace concentrations of many biological molecules such as L-ascorbic acid (AA). L-ascorbic acid is an electro-active molecule, though it is difficult to determine its value directly with a majority of electrodes made of carbon and transition metals, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017